Given: circle k(O), m
LM
= 164°
m
WK
= 68°, m∠MLK = 65°
Find: m∠LMW

Let P be a point outside the circle such that triangle LMP has legs coincident with chords MW and LK (i.e. M, W, and P are colinear, and L, K, and P are colinear). By the intersecting secants theorem,
[tex]m\angle LPM=\dfrac{m\widehat{LM}-m\widehat{WK}}2\impliesm\angle LPM=48^\circ[/tex]
The angles in any triangle add to 180 degrees in measure, and [tex]\angle MLK\congruent\angle MLP[/tex] and [tex]m\angle LMW=m\angle LMP[/tex], so that
[tex]m\angle MLK+m\angle LPM+m\angle LMP=180^\circ[/tex]
[tex]\implies\boxed{m\angle LMW=67^\circ}[/tex]