hey, could you help me real quick?

solution:
[tex]\frac{299}{6}=49\frac{5}{6}[/tex]
decimal result:
[tex]49.833[/tex]
1. Simplify the expression
[tex]26/3*23/4[/tex]
Multiply the fractions:
[tex]\frac{\left(26\cdot23\right)}{\left(3\cdot4\right)}[/tex]
Cancel terms:
[tex]\frac{\left(13\cdot23\right)}{\left(3\cdot2\right)}[/tex]
Simplify the arithmetic:
[tex]\frac{299}{\left(3\cdot2\right)}[/tex]
Simplify the arithmetic:
[tex]\frac{299}{6}[/tex]
Simplify the fraction:
[tex]\frac{299}{6} =49\frac{5}{6}[/tex]
[tex]==========================================[/tex]
First, let's convert the mixed numbers into improper fractions:-
[tex]\bf{8\displaystyle\frac{2}{3}[/tex]
[tex]\displaystyle\frac{26}{3}[/tex]
Now, do the same for the second fraction:-
[tex]\displaystyle\frac{23}{4}[/tex]
Now, the formula for the area is
[tex]\bold{A=bh}[/tex]
We know both b and h, so we can just plug in the values and solve:
[tex]\bold{A=\displaystyle\frac{26}{3} *\frac{23}{4} }}[/tex]
Actually, we can reduce some fractions here (we can divide 26 and 4 by 2)
[tex]\bold{\displaystyle\frac{13}{3} *\frac{23}{2}}[/tex]
Multiplying 13 times 23 is easier than multiplying 26 times 13.
Now, this can only be done if the numbers do have some common factors. Both fractions are now in simplest form; 13, 23, 3 & 2 don't have common factors.
Multiply:
[tex]\bold{\displaystyle\frac{13*23}{3*2}}}[/tex]
The answer is
[tex]\bold{\displaystyle\frac{299}{6}}[/tex]
Convert to a Mixed Number:-
[tex]\bold{49\displaystyle\frac{5}{6}}[/tex]
[tex]==================================[/tex]
Nickname:- [tex]\mathbb{DiAmOnD}[/tex]
[tex]\boxed{An~emotional~helper}[/tex]