Find the slope of the line graphed below.

to get the equation of any straight line, we simply need two points off of it, let's use the ones provided in the picture below.
[tex](\stackrel{x_1}{1}~,~\stackrel{y_1}{4})\qquad (\stackrel{x_2}{3}~,~\stackrel{y_2}{-3}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-3}-\stackrel{y1}{4}}}{\underset{run} {\underset{x_2}{3}-\underset{x_1}{1}}} \implies \cfrac{-7}{2}[/tex]
[tex]\begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{4}=\stackrel{m}{-\cfrac{7}{2}}(x-\stackrel{x_1}{1}) \\\\\\ y-4=-\cfrac{7}{2}x+\cfrac{7}{2}\implies y=-\cfrac{7}{2}x+\cfrac{7}{2}+4\implies y=-\cfrac{7}{2}x+\cfrac{15}{2}[/tex]