What is the area of one of the trianglar faces?

Answer:
The area of one of the triangular faces is;
[tex]6in^2[/tex]Explanation:
Given the diagram in the attached image.
We want to calculate the area of the triangular face.
Recall that the area of a triangle can be calculated using the formula;
[tex]A=\frac{1}{2}bh[/tex]Given;
[tex]\begin{gathered} b=3in \\ h=\sqrt[]{5^2-3^2}=\sqrt[]{25-9}=\sqrt[]{16} \\ h=4in \end{gathered}[/tex]Substituting the values;
[tex]\begin{gathered} A=\frac{1}{2}\times3in\times4in \\ A=6in^2 \end{gathered}[/tex]The area of one of the triangular faces is;
[tex]6in^2[/tex]