Solve the second inequality and express your answer in interval notation. Use decimal form for numerical values.

SOLUTION
Given the question in the image, the following are the solution steps
Step 1: Write out the inequalities
[tex]-5(y-4)\leq30\text{ or }18+y<20[/tex]Step 2: Solve for y by making y the subject of the formula
[tex]\begin{gathered} -5y+20\le30\text{ or }18+y<20 \\ -5y\le30-20\text{ or }y<20-18 \\ -5y\le10\text{ or }y<2 \\ -y\le2\text{ or }y<2 \\ y\ge-2\text{ or }y<2 \end{gathered}[/tex]Step 3: Combine the intervals
[tex]\begin{gathered} y\ge-2\text{ or }y<2 \\ y\ge-2\Rightarrow(-2,\infty) \\ y<2\Rightarrow(-\infty,2) \\ \text{ }-5(y-4)\leq30\text{ or }18+y<20\text{ means we find the union of the two intervals} \\ -5(y-4)\leq30\text{ or }18+y<20\Rightarrow(-\infty,\infty) \end{gathered}[/tex]
This means that the interval notation will be:
[tex](-\infty,\infty)[/tex]