Given the equation:
[tex]\sec ^2(x)-6\sec (x)=0[/tex]To solve this, we observe that sec(x) can not be 0. Simplifying the equation:
[tex]\begin{gathered} \sec ^2(x)=6\sec (x) \\ \frac{\sec ^2(x)}{\sec (x)}=6 \\ \sec (x)=6 \\ \frac{1}{\sec (x)}=\frac{1}{6} \\ \cos (x)=\frac{1}{6} \\ x=\cos ^{-1}(\frac{1}{6}) \end{gathered}[/tex]This is equal to (in radians), and given that the period of the cosine is 2π:
[tex]x=1.4033+2\pi n[/tex]