Respuesta :

we will use the next formula to find the rate of change of the given interval

[tex]r=\frac{f(b)-f(a)}{b-a}[/tex]

in our case

a=-3

b=6

[tex]f(-3)=10\log (-3+4)+2=2[/tex]

[tex]f(6)=10\log (6+4)+2=12[/tex]

then we substitute the values in the formula

[tex]r=\frac{12-2}{6-(-3)}=\frac{10}{6+3}=\frac{10}{9}[/tex]

The average rate of change is 10/9=1.11