Find the length of FG, Express your answer as a fraction times pie.

Given:
EF = 2
m∠FEG = 144 degrees.
Let's fid the length of arc FG.
To find the length of arc FG, apply the formula:
[tex]L=2\pi r\times\frac{\theta}{360}[/tex]Where:
r is the radius = 2
θ is the central angle = 144 degrees.
Thus, we have:
[tex]\begin{gathered} L=2\pi\times2\times\frac{144}{360} \\ \\ L=4\pi\times\frac{2}{5} \\ \\ L=\frac{8}{5}\pi\text{ } \end{gathered}[/tex]Therefore, the length of arc FG as a fraction times pi is:
[tex]\frac{8}{5}\pi[/tex]ANSWER:
[tex]\frac{8}{5}\pi[/tex]