Respuesta :

Consider the circle

we have the intersecting chords theorem, which states that

[tex]a\cdot b=c\cdot d[/tex]

In our case we have a=x, b=12, c=6 and d=x+4. So we have

[tex]12\cdot x=6\cdot(x+4)[/tex]

distributing on the right side we get

[tex]12\cdot x=6x+6\cdot4=6x+24[/tex]

Subtracting 6x on both sides, we get

[tex]24=12x\text{ -6x=6x}[/tex]

Dividing boht sides by 6, we get

[tex]x=\frac{24}{6}=4[/tex]

So, the value of x is 4. Now we replace this value to find the length of each chord, so we have

x---->4

12---->12

x+4----->4+4=8

6----->6

Ver imagen DaimianW156642