Respuesta :

The given function is:

[tex]y=\ln (\sinh 9z)[/tex]

Differentiate w. r. t. z to get:

[tex]\begin{gathered} \frac{dy}{dz}=\frac{d}{dz}(\ln \sinh 9z) \\ =\frac{1}{\sinh9z}\frac{d}{dz}(\sinh 9z) \\ =\frac{1}{\sinh9z}\cosh 9z(\frac{d}{dz}9z) \\ =\frac{9\cosh 9z}{\sinh 9z} \\ =9\cot h9z \end{gathered}[/tex]

Hence the derivative is 9cot9z.