Respuesta :

It is given that

[tex]g(x)=4x-3[/tex]

Now to find the inverse of g

Let

[tex]\begin{gathered} y=4x-3 \\ 4x=y+3 \\ x=\frac{y+3}{4} \end{gathered}[/tex]

So

[tex]g^{-1}(x)=\frac{x+3}{4}[/tex]

Now we know that

[tex](g^{-1}.g)(x)=\text{ x}[/tex]

So

[tex](g^{-1}.g)(2)=2[/tex]

And since

[tex]h(-6)=3[/tex]

So

[tex]h^{-1}(3)=-6[/tex]